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In the present study, a system for Combined Heat and Power (CHP) generation from mechanically dewatered Sewage Sludge (SS) is numerically analyzed through Aspen Plus software. The proposed system is composed of three consecutive processes: drying, gasification, and energy generation through an internal combustion engine. The gasification model is calibrated by applying a restricted chemical equilibrium approach and validated for four experimental outcomes available in the literature. Optimum gasification temperature (900 °C) is identified at an ideal equivalence ratio which is the ratio between actual air fed to the reactor to the stoichiometric air required for complete combustion of 0.2 predicted in a previous study through a sensitivity analysis. The CHP generation potentiality is assessed, finding 0.89 kWh/kg SS as Dry Solid (DS) of electrical and 1.67 kWh/kg of SS as DS of thermal energy. This allows supplying around 50 % of electrical energy required to run the wastewater treatment plant and is sufficient to complete the thermal drying of mechanically dewatered SS.  
Introduction
Energy recovery from mechanically dewatered Sewage Sludge (SS) as Combined Heat and Power (CHP) through gasification integrated with an Internal Combustion Engine (ICE) offers a high recovery efficiency, reduces the greenhouse gas emission, and increases renewable energy production (Zhang et al., 2019). Generated electrical energy can be used to run WasteWater Treatment Plants (WWTPs) and thermal energy to reduce the moisture content of mechanically dewatered SS from around 70 to less than 10 % as required for the gasification treatment (Di Fraia et al., 2016; Abdelrahim et al., 2020). 
The thermal drying process of mechanically dewatered SS is energy-intensive, with a demand of around 0.85 kWh/kg of evaporated water  (Bennamoun et al., 2013). Huang et al. (2016) evaluated the average surface heat and mass transfer coefficients by varying the operating condition of air temperature (100–160 °C) and speed (0.6–2.0 m/s) for SS drying in a convective dryer. Bennamoun et al. (2016) identified optimum operating conditions (air temperature = 140 °C, velocity = 2 m/s, and air humidity = 0.05 kgwater/kgDry air) for drying of mechanically dewatered SS in a convective dryer, estimating an exergy efficiency of 90 %.
The product generated through the gasification is syngas, a mixture of CO, H₂, CO₂, CH₄, moisture, tar, and other lighter hydrocarbons that may be used for CHP production, district heating, and chemical synthesis (Abdelrahim et al., 2020). The composition of syngas generated through air-gasification of SS depends on the characteristics of SS and the operating conditions of temperature and Equivalence Ratio (ER) (Di Fraia et al., 2021).  
de Andres et al. (2011) performed 19 tests to recognize optimum temperature (850 °C) and ER (0.2) during syngas generation from SS in a bubbling Fluidized Bed Reactor (FBR). Jeong et al. (2019) completed 7 experiments during syngas generation from SS through co-gasification with coal by using air in a two-stage FBR to detect optimum temperature (811 °C) and ER (0.3). 
Identification of optimum operating parameters for gasification through an experimental campaign is time-consuming and costly. Numerical modelling based on experimental data, i.e. through the simulation software Aspen Plus, to identify the optimum operating parameters for SS gasification can save time and cost significantly (Abdelrahim et al., 2020; Di Fraia et al., 2021). 
Model development on Aspen Plus for operating parameters optimization during air-gasification of SS is limited (Abdelrahim et al., 2020; Migliaccio et al., 2021). Abdelrahim et al. (2020) predicted as optimum operating parameters a temperature of 780 °C and an ER of 0.3 whereas Migliaccio et al. (2021) estimated identical ideal temperatures (850 °C) and ER (0.25) for syngas generation from two different SS. 
There are limited research articles available in the literature on Aspen Plus model development related to CHP generation from biomass (François et al., 2012; Villarini et al., 2019) and only two from SS through gasification integrated with an ICE system (Di Fraia et al., 2021; Brachi et al., 2022). Francois et al. (2012) assessed electrical (23 %), thermal (40 %) and cogeneration (67 %) efficiencies for CHP generation from wood. di Fraia et al. (2021) estimated electrical (29.20 %), thermal (45.92 %), and cogeneration (53.10 %) efficiencies during CHP generation from SS whereas Brachi et al. (2022) predicted electrical (19.3 %) and thermal (48.7 %) efficiencies.
In the present study, a simulation model is developed to analyse the conversion of mechanically dewatered SS to CHP through three consecutive processes of thermal drying, gasification, and energy generation through an ICE. A convective belt dryer is considered due to its flexibility to manipulate and control (Di Fraia et al., 2016; Huang et al., 2016). The gasification model, based on a restricted chemical equilibrium approach (Abdelrahim et al., 2020; Di Fraia et al., 2021; Migliaccio et al., 2021), is calibrated and validated through the experimental data on syngas generation from SS in a fixed bed gasifier (Werle, 2014). Optimum operating temperature is identified through a sensitivity analysis. Finally, the CHP generation potentiality of SS is evaluated to identify the possible use for wastewater and sludge treatment.   
Numerical Simulation: CHP from mechanically dewatered SS
Process flowsheet development
The scheme for the proposed plant by connecting the processing unit of the dryer, gasifier, and ICE to generate CHP from mechanically dewatered SS is presented in Figure 1.
[image: Diagram

Description automatically generated]
Figure 1: Flow diagram of the proposed plant for CHP generation from mechanically dewatered SS. 
A detailed description of simulation related to CHP generation from mechanically dewatered SS through thermal drying, gasification integrated with an ICE is available in the literature (Di Fraia et al., 2016, 2021). ICE system is simulated considering the thermodynamic steps of compression, combustion, and expansion (Villarini, et al., 2019; Di Fraia et al., 2021). The description of the functional activities of each block used from the Aspen Plus library in the proposed plant is depicted in Table 1.
Model development
Thermal Drying: The drying process is simulated to reduce the moisture content of mechanically dewatered SS from 48.72 to 5.53 % based on the following parameters of dryer length 20 m, drying time 3.45 h, heat transfer coefficient of 20.89 Wm-2K-1, critical, and equilibrium moisture content of 0.14 and 0.000984, respectively. Normalized drying rates against normalized moisture content for thermal drying of mechanically dewatered SS at 110 °C are collected from the literature (Huang et al., 2016).
Gasification: The gasification process is simulated based on the following simplifying assumptions (Di Fraia et al., 2021): the developed model is kinetic free and zero-dimensional; gasification is completed in steady-state and isothermal condition; volatile products (H₂, CO, CO₂, CH₄, and H₂O) are formed through instantaneous pyrolysis of SS; all gases behave ideally; char is full of carbon and tar formation is neglected as it is ignored on available literature for SS gasification process (Abdelrahim et al., 2020; Di Fraia et al., 2021; Migliaccio et al., 2021). Indeed, tar formation ignorance does not have any impact on the evaluation of the energy recovery potentiality of SS. 
Gasification model is calibrated to reduce the deviation which is created due to the difference between the syngas composition and LHV (Lower Heating Value) predicted through the developed model and experimental data. It is suggested that the deviation of syngas composition from experimental outcomes should be lower than ±20% to claim the developed model has good agreement with the experimental campaign. This can be achieved by restricting  individual gasification reactions to a specific temperature according to equation (1) (Abdelrahim et al., 2020; Di Fraia et al., 2021): 
	 
	     (1)


 where, is the equilibrium temperature, is the gasification temperature and is the limit of gasifier temperature where the reaction is restricted.
Characteristics of SS are presented in Table 2. The reactions considered to complete the gasification process simulation are presented in Table 3. 
The composition of generated syngas at five distinct operating conditions is presented in Table 4 (Werle, 2014). Operating parameters and syngas properties at condition III is used for model calibration by applying a restricted chemical equilibrium approach whereas the remaining four conditions are for validation. During model calibration,  is predicted through regression tools available in Aspen Plus by setting a 5% standard deviation (95 % confidence level) from the experimental outcomes and the results are illustrated in Table 5 with a fraction of carbon participating in the gasification process.
Table 1. Functional description of unit operation block used in Aspen Plus flowsheet.
	Process
	Block Name
	Function

	Drying
	Heater
	It increases the temperature (110 °C) of incoming air to dry WETSS stream.

	
	Convective Dryer
	It reduces the moisture content of mechanically dewatered SS from 48.72 to 5.53 wt% at 110 °C (Huang et al., 2016).

	Gasification
	RYield
	It completes the decomposition of SS (at 400 °C specifics for pyrolysis) to conventional (C, H₂, N₂, S, Cl₂, F₂) and non-conventional (ash) components based on ultimate analysis (Di Fraia et al., 2021).

	
	Separator
	It separates the decomposed product into three streams: GASFEED (fraction of C, H₂, N₂, S, Cl₂, and F₂), CHAR (fraction of carbon), and C-ASH (ash).

	
	RGibbs
	It completes the combustion of char to supply heat to the gasifier.

	
	Heater
	It increases incoming air temperature to complete the gasification process.

	
	RGibbs
	It completes the gasification reaction by minimizing Gibb's free energy. 

	
	Heater
	It increases the ash temperature to equalize with gasification products.

	
	Mixer
	It mixes the gasification products and ash.

	Cleaning & Cooling
	SSplit
	It completes the separation of solid particles from syngas.

	
	Heater
	It reduces the syngas temperature to ambient value (30 °C) through cooling.

	ICE system
	Compressor
	It increases the potential energy of incoming air through pressure raising. 

	
	RGibbs
	It completes the combustion of the syngas to generate thermal energy.

	
	Turbine
	It generates mechanical energy from the thermal energy of CMBST stream to produce electricity.

	
	Heater
	It generates thermal energy from the exhaust stream of block TURB. 


Process performance evaluation: Gasification and cogeneration system
Gasification process performances are evaluated through the prediction of syngas LHV, Cold Gas Efficiency (CGE), Carbon Conversion Efficiency (CCE), and net power ( available from the gasification products. Syngas LHV depends on composition and corresponds to equation (2) (Zheng et al., 2019). CGE is the ratio of energy content between the gasification products and input and CCE is the ratio of carbon present in the syngas to the reactant, (Jeong et al., 2019).  is the difference between the power gain from products and the investment to complete the gasification process.
	 
	(2)


where, denote the volume fraction of H₂, CO, and CH₄ present in syngas, respectively. 
Cogeneration process performances are characterized by evaluating electrical and thermal efficiencies of the engine as well as the efficiency of the system . For the sake of completeness: 
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where,  denotes effective power obtained from the model of the ICE,  is the heat available during the cooling of syngas before entering the ICE,  denotes the available thermal power generated from the cooling of turbine exhausts to usable temperature (80 °C) (Di Fraia et al., 2021) and  is the rate of power supplied associated with the RGibbs reactor including air preheating.  
Operating parameters for cogeneration process simulation
The operating conditions required to complete the cogeneration process simulation are collected from literature and are presented in Table 6 (Di Fraia et al., 2021).
	Table 2. Characteristics of thermally dried SS (Werle, 2014).
	Proximate analysis (wt%)
	Ultimate analysis (wt%)

	Moisture
	5.30
	C
	31.79

	
	
	H₂
	4.36

	Volatile matter
	51.00
	N₂
	4.88

	
	
	S
	1.67

	Fixed carbon
	7.20
	F₂
	0.013

	
	
	Cl₂
	0.22

	Ash
	36.50
	O₂
	20.57

	LHV (MJ/kg, d.b)
	12.96

	*d.b = Dry basis



	
Table 3. List of reactions considered in the gasification model.
	Rxn 
	Reaction
	Name of Rxn

	R1
	C + H₂O → H₂ + CO
	Water-gas

	R2
	C + O₂ → CO₂
	Carbon combustion

	R3
	C + 2H₂ → CH₄
	Methanation

	R4
	CO + H₂O → H₂ + CO₂ 
	Water Gas Shift

	R5
	C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
	Ethene combustion

	R6
	C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
	Propane combustion

	R7
	H₂ + 0.5O₂ → H₂O 
	Hydrogen combustion

	*Rxn = Reaction




	Table 4. Overview of gasification conditions and corresponding syngas compositions (Werle, 2014).
	Test condition
	I
	II
	III
	IV
	V

	Operating Parameters

	Temperature (°C)
	900
	920
	940
	960
	980

	ER (-)
	0.23

	SS fed rate (kg/h)
	1.0

	Air fed rate (kg/h)
	1.01

	Syngas composition (vol%), (Dry & N₂ free basis)

	H₂
	12.63
	12.95
	13.00
	13.05
	13.00

	CO
	56.95
	57.18
	57.40
	58.13
	58.97

	CO₂
	28.47
	27.90
	27.61
	26.69
	25.80

	CH₄
	1.95
	1.97
	1.99
	2.14
	2.23



	Table 5. Predicted  for each reaction and fraction of carbon participate in the gasification process.
	Reaction No.
	C)

	R1
	-313.2

	R2
	-500.0

	R3
	-485.1

	R4
	500.0

	R5
	-500.0

	R6
	-456.8

	R7
	-482.0

	Fraction of C participating in gasification reaction
	0.932





Table 6. Operating parameters for the simulation of the cogeneration system (Di Fraia et al., 2021).
	Operating conditions
	Value 
	Operating conditions
	Value

	Temperature (incoming syngas to the ICE, °C)
	30.0
	Isentropic expansion and compression coefficient (%)
	90.0

	Temperature (incoming air to the compressor, °C)
	20.0
	
	

	Stoichiometric air ratio (-)
	3.0
	Pressure (fume exit from turbine, bar)
	1.0

	The pressure of air exit from compressor and combustion chamber (bar)
	20.0
	Utilization temperature of exhaust fume (°C)
	80.0


Results and Discussion
Thermal Drying: the thermal energy required to complete the drying process is estimated to be 0.83 kWh/kg. 
Gasification: comparison between the results predicted through the developed model and the experimental campaign available in the literature (Werle, 2014) during calibration and validation is presented in Figure 2. 
The developed model has a good agreement with the experimental campaign as the deviation of individual components <±15 % with an average value in the range of 6.0 - 11.32 % during model calibration and validation.
Sensitivity analysis 
Variation of syngas composition, CCE, CGE, LHV of syngas and  with gasification temperature in the range of 700 to 1000 °C at a fixed ER of 0.2 estimated as an optimum value in a previous study carried out by the authors (Di Fraia et al., 2021) is presented in Figure 3. The concentration of H₂ and CO raises continuously with temperature whereas that of CO₂ and C₂H₆ decreases and a slower increase for CH₄ due to the forward movement of endothermic (water-gas and water gas shift) reactions. Combustion reactions present the opposite trend and the concentration of CO₂ and C₂H₆ decreases. H₂ and CO are the major contributor components to syngas LHV (Jeong et al., 2019; Zheng et al., 2019). Consequently, LHV, CGE and  increase with temperature. The decrease of carbon content through CO₂ concentration is lower than increment by CO. As a result, CCE increases continuously with temperature. rises with temperature up to 900 °C and afterward decreases due to the increase of required thermal power to complete the gasification process. The increase of available power from 900 to 950 °C is lower compared to the demand and consequently,  decreases.
(b)

	(a)

	

	Figure 2: Comparison of syngas composition predicted through the developed model with the experimental campaign during (a) Model calibration and (b) Model validation.(a)

(b)




Figure 3: Effect of temperature on (a) syngas composition, (b) CCE and CGE of the gasification process, and (c) Syngas LHV and net power available from the gasification products.
(c)

Based on the current simulation results, 900 °C is the optimum temperature for gasification of SS and afterward is not profitable in terms of net power obtained from the products. The effect of temperature on syngas composition, CCE, CGE, and LHV obtained in the present study is in accordance with the available literature on SS gasification (Abdelrahim et al., 2020; Di Fraia et al., 2021; Migliaccio et al., 2021).
Cogeneration process performances 
The potentiality of electrical and thermal power generation from SS is found to be 0.89 kWh/kg SS as DS and 1.67 kWh/kg SS as DS, respectively. The predicted value of CGE, , electrical and thermal efficiencies result to be 72.3 %, 67.4 %, 24.8 %, and 46.3 % respectively which are in agreement with those found in the pertinent literature (Di Fraia et al., 2021).
Based on the current simulation results it can be said that the generated electrical energy can support around 50 % of the demand specified to run a WWTP considering the energy demand evaluated by the German Ministry of Environment (Capodaglio and Olsson, 2020) and thermal power is sufficient to reduce the moisture content of mechanically dewatered SS  from 48.72 to 5.53 % by thermal drying. 
Conclusion 
A simulation on Aspen Plus is carried out to analyze the combined heat and power generation potentiality of mechanically dewatered SS. The proposed layout is composed of three consecutive processes: drying followed by gasification and an internal combustion engine. Optimum operating temperature for the gasification of SS is predicted by considering its impact on syngas composition, LHV, CCE, CGE and . Temperature rising improves the syngas LHV and gasification process performances. 
The evaluated combined heat and power generation potentiality from SS obtained in the present analysis highlights that
· Around 50 % of electrical energy needed for wastewater treatment 
· The entire thermal energy required to complete the drying of mechanically dewatered SS as needed for gasification treatment
can be produced through the proposed system. 
Simulation on co-gasification of SS with biomass or wood will be carried out as future research to improve the cogeneration efficiencies predicted in the current study.  
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Experimental Result	H₂ (vol.%)	CO (vol.%)	CO₂ (vol.%)	CH₄ (vol.%)	13.00893743793446	57.39821251241311	27.606752730883819	1.9860973187686199	Simulation Result	H₂ (vol.%)	CO (vol.%)	CO₂ (vol.%)	CH₄ (vol.%)	15.279524626670327	51.909675020770393	30.683633687367934	2.1271666651913468	Deviation (%)	H₂ (vol.%)	CO (vol.%)	CO₂ (vol.%)	CH₄ (vol.%)	17.454055717992503	-9.5622097821526229	11.14539252942267	7.102841592384296	Average Deviation (%)	H₂ (vol.%)	CO (vol.%)	CO₂ (vol.%)	CH₄ (vol.%)	11.316124905488023	Syngas component


Syngas composition (vol.%), (Dry & N₂ free basis)




H₂: Sim.	900	920	960	980	12.604856727913171	14.514630971084195	14.968021205709981	14.848664341224657	CO: Sim.	900	920	960	980	51.834394620679092	51.569211508135496	55.433527193238184	59.092886966098156	CO₂: Sim.	900	920	960	980	33.50772421546835	27.894002789400275	27.423246388488508	23.722620574517006	CH₄: Sim.	900	920	960	980	2.0530244359393959	1.7821359728041268	2.175205212563331	2.3358281181601668	H₂: Exp.	900	920	960	980	12.632845398034892	12.950787009364413	13.048635824436536	12.99709020368574	CO: Exp.	900	920	960	980	56.948064968919191	57.182705718270562	58.125741399762752	58.971871968962162	CO₂: Exp.	900	920	960	980	28.474032484459595	27.894002789400275	26.690391459074736	25.80019398642095	CH₄: Exp.	900	920	960	980	1.9450571485863246	1.9725044829647338	2.1352313167259789	2.2308438409311346	Gasification Temperature (⁰C)


Syngas Composition (vol.%), (Dry & N₂ free basis)




CGE	700	750	800	850	900	950	1000	70.010000000000005	71.23	73.2	75.376750593364193	78.377739164351851	82.770812312499999	87.680543929012345	CCE	700	750	800	850	900	950	1000	44.32	45.672131239659208	46.770735665977611	49.937703582356612	56.928067247317017	69.744465301920471	85.773359975978707	Gasification Temperature (°C)


CCE & CGE, (%)




CGE	700	750	800	850	900	950	1000	70.010000000000005	71.23	73.2	75.376750593364193	78.377739164351851	82.770812312499999	87.680543929012345	CCE	700	750	800	850	900	950	1000	44.32	45.672131239659208	46.770735665977611	49.937703582356612	56.928067247317017	69.744465301920471	85.773359975978707	Gasification Temperature (°C)


CCE & CGE, (%)




H₂	700	750	800	850	900	950	1000	3.3139005414652259E-4	0.17601548248825774	0.8036869890447057	3.0010056330742838	9.1347511616963395	20.575201863626017	32.554023766108877	CO	700	750	800	850	900	950	1000	4.7816898631437965	1.4031854722573183	6.0754600285085694	17.788964955475585	35.276868961811672	48.865447603033651	53.062923209932464	CO₂	700	750	800	850	900	950	1000	60.937575629842755	63.584427219771079	59.525110375139121	49.037576261301894	31.944057481456639	15.272596173494707	6.034025640924285	CH₄	700	750	800	850	900	950	1000	5.8427215371368536E-3	1.0218841378422838E-3	1.8590353595704212E-2	0.18180148910421973	1.0340385471576865	3.2525878829278549	5.026566473218093	C₂H₆	700	750	800	850	900	950	1000	34.274560395422178	34.835349941345498	33.577152253711894	29.990651661044037	22.610283847877653	12.034166476917779	3.3224609098162974	C₃H₈	700	750	800	850	900	950	1000	0	0	0	0	0	0	0	Gasification Temperature (°C)


Syngas Composition (vol%), (Dry & N₂ free basis)




LHV	700	750	800	850	900	950	1000	7.1356000000000003E-2	8.251245457456402E-2	0.36423683404175788	1.144195993103484	2.6848866439948931	4.930476004112708	6.9614185115936573	Net Power	700	750	800	850	900	950	1000	2.2043754220337894	2.240009833275947	2.2895078942091334	2.3483039235319612	2.3657263121739449	2.169737045633799	2.0295207839696436	Gasification Temperature (°C)
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